Frameworks and Results in Distributionally Robust Optimization

نویسندگان

چکیده

The concepts of risk aversion, chance-constrained optimization, and robust optimization have developed significantly over the last decade. statistical learning community has also witnessed a rapid theoretical applied growth by relying on these concepts. A modeling framework, called distributionally (DRO), recently received significant attention in both operations research communities. This paper surveys main contributions to DRO, relationships with function regularization. Various approaches model distributional ambiguity their calibrations are discussed. describes solution techniques used solve resulting problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributionally Robust Convex Optimization

Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...

متن کامل

Distributionally Robust Optimization and Its Tractable Approximations

In this paper, we focus on a linear optimization problem with uncertainties, having expectationsin the objective and in the set of constraints. We present a modular framework to obtain an approx-imate solution to the problem that is distributionally robust, and more flexible than the standardtechnique of using linear rules. Our framework begins by firstly affinely-extending the ...

متن کامل

Calibration of Distributionally Robust Empirical Optimization Models

JUN-YA GOTOH, MICHAEL JONG KIM, AND ANDREW E.B. LIM Department of Industrial and Systems Engineering, Chuo University, Tokyo, Japan. Email: [email protected] Sauder School of Business, University of British Columbia, Vancouver, Canada. Email: [email protected] Departments of Decision Sciences and Finance, NUS Business School, National University of Singapore, Singapore. Email: andr...

متن کامل

Distributionally Robust Optimization for Sequential Decision Making

The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...

متن کامل

Data-driven Distributionally Robust Polynomial Optimization

We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open journal of mathematical optimization

سال: 2022

ISSN: ['2777-5860']

DOI: https://doi.org/10.5802/ojmo.15